Binary Clause Reasoning in QBF

نویسندگان

  • Horst Samulowitz
  • Fahiem Bacchus
چکیده

Binary clause reasoning has found some successful applications in SAT, and it is natural to investigate its use in various extensions of SAT. In this paper we investigate the use of binary clause reasoning in the context of solving Quantified Boolean Formulas (QBF). We develop a DPLL based QBF solver that employs extended binary clause reasoning (hyper-binary resolution) to infer new binary clauses both before and during search. These binary clauses are used to discover additional forced literals, as well as to perform equality reduction. Both of these transformations simplify the theory by removing one of its variables. When applied during DPLL search this stronger inference can offer significant decreases in the size of the search tree, but it can also be costly to apply. We are able to show empirically that despite the extra costs, binary clause reasoning can improve our ability to solve QBF.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficient Clause Learning for Quantified Boolean Formulas via QBF Pseudo Unit Propagation

Recent solvers for quantified boolean formulas (QBF) use a clause learning method based on a procedure proposed by Giunchiglia et al. (JAIR 2006), which avoids creating tautological clauses. Recently, an exponential worst case for this procedure has been shown by Van Gelder (CP 2012). That paper introduced QBF Pseudo Unit Propagation (QPUP) for non-tautological clause learning in a limited sett...

متن کامل

Dynamic Programming-based QBF Solving

Solving Quantified Boolean Formulas (QBFs) is a challenging problem due to its high complexity. Many successful methods have been proposed, including extensions of DPLL/CDCL procedures and expansion-based approaches. In this paper, we present a novel method that is inspired by concepts from the field of parameterized complexity. More specifically, we develop a dynamic programming algorithm that...

متن کامل

A Symbolic Search Based Approach for Quantified Boolean Formulas

Solving Quantified Boolean Formulas (QBF) has become an important and attractive research area, since several problem classes might be formulated efficiently as QBF instances (e.g. planning, non monotonic reasoning, twoplayer games, model checking, etc). Many QBF solvers has been proposed, most of them perform decision tree search using the DPLL-like techniques. To set free the variable orderin...

متن کامل

Blocked Clause Elimination for QBF

Quantified Boolean formulas (QBF) provide a powerful framework for encoding problems from various application domains, not least because efficient QBF solvers are available. Despite sophisticated evaluation techniques, the performance of such a solver usually depends on the way a problem is represented. However, the translation to processable QBF encodings is in general not unique and may eithe...

متن کامل

On Q-Resolution and CDCL QBF Solving

Q-resolution and its variations provide the underlying proof systems for the DPLL-based QBF solvers. While (long-distance) Q-resolution models a conflict driven clause learning (CDCL) QBF solver, it is not known whether the inverse is also true. This paper provides a negative answer to this question. This contrasts with SAT solving, where CDCL solvers have been shown to simulate resolution.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006